
.net technique/backend

106 .net june 2011

 Knowledge needed HTML, basic use of Command-Prompt, Terminal.app or Bash

 Requires Ruby, Rails, SQLite, browser, text editor

 Project time 2-3 hours

In this tutorial, we’ll extend the blog from part one and dive
deeper into the Rails framework. We’ll also look at integrating third-
party libraries to give extra functionality for very little effort.

If you missed part one in issue 214, you can download a PDF, along with
the tutorial files for both parts, from netm.ag/rails-215. You’ll also need Ruby,
Rails and SQLite installed.

You’ll have to make use of the Rails, Rake and Gemtools, so we’ll start with a
quick recap of how to use the command line.

To open a prompt on Windows, select Start Menu > Run > "cmd". This
should bring up a dos-prompt.

On OS X, open the Terminal.app from /Applications/Utilities.
On Linux you’ll usually find a shell program somewhere in your

distro’s menus.
With the prompt, you can navigate to your Rails project by using the cd

command to move between directories:

 $ cd . # move up a level
 $ cd ./foo # move into a subdirectory called foo
 $ cd # return to your home directory

Once in place, you can start Rails’ web server by using the following
command and then visiting http://localhost:3000 in your browser:

 $ rails server

If you want to interact with the constituent objects of your app, invoke the console:

 $ rails console
 > article = Article.new
 > article.title = "Hello World"
 > article.body = "Some words"
 > article.save
 => true
 > found_article = Article.find_by_title "Hello World"
 => #<Article id: 1, title: "Hello World", …>

Visitor comments
The next step in our blog is to enable readers to leave comments. Let’s think
about what this will involve in terms of the MVC (Model, View, Controller)
pattern from part one.

At the Model level, we’ll need a way of storing or retrieving comments from
our database. Additionally, we’ll need to describe the relationship between an
article and its comments and vice versa. This will be familiar to you if you’ve
done any database stuff as a 1-to-N or a has-many relationship.

In our Controller, we’ll want to be able to parse user input into instances of
our Comment model and try to save them. Finally, in the View, we want to
both present these comments and provide a form that will enable visitors to
bestow their collective wisdom on us. We previously used the scaffold
command as a shortcut to the article Model, Controller and Views, but this
time we’ll walk through each individual step of the stack in a bit more detail.
We’ll start at the bottom by defining our Model class:

 $ rails generate model Comment name:string body:text article:references

This will stub out a class in app/models/comment.rb for us, and define a new
migration in /db/migrate that we can use to create the database table via rake:

 $ rake db:migrate

We can now start a console and manipulate comment. As with our articles,
Rails’ ActiveRecord framework handles all the database interaction for us:

 $ rails console
 > comment = Comment.new
 => #<Comment id: nil, name: nil, body: nil....>
 > comment.name = "Bob"
 > comment.body="Hello world"
 > comment.save
 > Comment.find(:first)
 => #<Comment id: 1, name: "Bob", body: "Hello world",>

Our comments aren’t much use on their own, though; we need to define
them by the article they belong to. Add the following lines into your article and
comment classes in app/models:

 class Article < ActiveRecord::Base
Gem of an idea The acts-as-taggable-on gem will add the ability to tag your objects
and more – see github.com/mbleigh/acts-as-taggable-on for full details

Download
the fi les! >
All the fi les you

need for this tutorial

can be found at

netm.ag/rails-215Part two In the second of a two-part tutorial, Gavin Montague explains how to
extend your blog by integrating third-party libraries for extra functionality

Rails build a blog
with Rails 3.0

build a blog
with Rails 3.0

build a blog

NET215.dev_tut_rails 106 4/5/11 12:59:39 PM

		 .net june 2011 107 next>

.net technique/backend

 has_many :comments, :order=>"id"�
 end�
 class Comment < ActiveRecord::Base�
 belongs_to :article�
 end�

I’ve said previously that Ruby and Rails combine to form a very expressive syntax,
and this is another good example: the meaning of the code shines through:

 $ rails console�
 > article = Article.first�
 => #<Article id: 1, title: "An article about rails"....>�
 > article.comments�
 => []�
 > article.comments.create :name=>"Adam", :body=>"Hiya, Saturn"�
 => #<Comment id: 2, name: "Adam", body: "Hiya, Saturn" ...>�
 > article.comments.create :name=>"Zoe", :body=>"Ciao, Mars"�
 => #<Comment id: 3, name: "Zoe", body: "Ciao, Mars", article_id: 1>�
 > article.comments.count�
 => 2�
 > article.comments.find_by_name("Zoe")�
 => #<Comment id: 3, name: "Zoe", body: "Ciao, Mars", article_id: 1>�
 > comment = Comment.last�
 => #<Comment id: 3, name: "Zoe", body: "Ciao, Mars", ...>�
 > comment.article�
 => #<Article id: 1, title: "one", body: "two"...>�

We now have access to our articles and comments not just on their own,
but also by the relationship between them. We can tell an article to add
a comment, which will automatically be associated with the correct article
at the database level. We can also ask a comment which article it belongs
to, and so on.

Visitor comments
We’re only touching on it here, but Rails provides an incredibly rich abstraction
layer that does most of the SQL heavy lifting. It’s rare to have to resort to raw
SQL in Rails; you have the option to if necessary, but it’s rarely required.
Developers are left to concentrate on what makes their application different
from everyone else’s, rather than having to reinvent the wheel every time they
search the database or write a record.

Create a few more comments for your articles on the console, then move on
to displaying them in your app. Open up views/articles/show.html.erb and
append the following:

 <h3>Comments</h3>�
 <%= render @article.comments %>�

Code repository As well as hosting the source code for Ruby and Rails, Github is the
home for most gems, plug-ins and open source projects written in Ruby

Start the server and visit one of your articles – Error: "Missing partial
comments/comment. Ah, we've asked Rails to render another template inside
our show one, so we best create it. Add a new file at app/views/comments/_
comment.html.erb.

A template that isn’t rendered directly but called from inside other ‘action’
templates is referred to as a ‘partial’, and always begins with an underscore:

 <h3><%= comment.name %> says...</h3>�
 <%= simple_format(comment.body) %>�
 <hr />�

You should now get a better result.
You might be feeling a bit dizzy now: how did Rails know what to do? We

didn’t tell it what template to render; we didn’t tell it to loop through our
comments; and where did the variable comment come from in our partial?
Well, one of Rails’ core principles is ‘Convention over Code’. If we follow the
best practices of Rails then it can accurately infer a great deal about our intent
that would otherwise clutter our code.

We’ve already used Convention over Code in our models. By naming our
tables in a certain way, we were able to use has_many and belongs_to to
describe the relationship between our tables. We passed an array to the render
method, so Rails inferred we wanted to loop through it and render the
template once for each item in it. We didn’t give an explicit template to render,
so Rails assumed that we wanted to render a certain path based on the
type of object in our array. In this case, it decided we wanted to use the

The gem command works by interrogating a number of online sources
to discover Gems. The most important is rubygems.org, the most
authoritative list of published gems, and a good port of call if you’re
looking to see if anyone else has already solved your problem.
	 If rubygems.org is the library for Ruby, GitHub (github.com) is its
playground. As well as hosting the source code for Ruby and Rails (along
with jQuery, YUI, Erlang, Prototype and more) it’s the home for most
gems, plug-ins and open source projects written in Ruby.
	 Open a free account and you’ll be able to explore the source code for
projects and even fork them to make your own customisations. Oh, and
did I mention that it’s all written in Rails?

List of gems RubyGems.org is the most authoritative list of published gems – a
good place to find out if someone else already has a solution to your problem

GitHub and RubyGems
Has your problem already been solved?

NET215.dev_tut_rails 107 4/5/11 12:59:40 PM

.net technique/backend

<prev 108 .net june 2011

template at comments/_comment.html.erb. All this implied meaning
can seem like magic at first, and you’re free to skip this shorthand and

be more explicit in your code. I could have rewritten the above as:

 <%= render :partial=>"/comments/comment", :collection=>@article.�
 comments %>�

Or even:

 <% @article.comments.each do |comment| %>�
	 <%= render :partial=>"/comments/comment", :object=>comment %>�
 <% end %>�

However, the original version is more concise and, once you know the rules,
clearer in its meaning.

Now let’s give our users the facility to add comments. To do this, we’ll
attach a form to the bottom of our article. First, though, take a look at the
config/routes.rb file.

Routing in Rails can be a bit confusing if you’ve previously only worked with
static HTML sites, or raw PHP (where there’s a one-to-one mapping between a
URL and file). If you visit /example/page.html then that’s what loads. Not so
with Rails. We have a step between the incoming request and the Controller
that deals with it. This gives Rails lots of flexibility in how we map URLs to
controllers and their actions. We’ll keep it simple and just let our app know
how it should handle comments.

Open config/routes.rb and replace the second line with:

 resources :articles do |article|�
 resources :comments, :only=>[:create]�
 end�

On the command line, run rake to see which URLs your app now responds to:

 $ rake routes�
 article_comments POST /articles/:article_id/comments(.:format) �
 {:action=>"create", :controller=>"comments"}�

That’s nice: Rails tells us what our URL will look like, which parameters we
need and what our action should be called.

Back in articles/show.html.erb, add:

 <h2>Add a Comment</h2>�
 <%= render :partial=>"/comments/form" %>�

Then create the partial to render the form in the comments folder app/
views/comments/_form.html.erb:

 <% form_for [@article, @comment||Comment.new] do |form| %>�
 <p><%= form.label :name %>: <%= form.text_field :name %></p>�
 <p><%= form.label :body %>: <%= form.text_area :body %></p>�
 <%= submit_tag "Comment" %>�
 <% end %>�

Again, there’s a fair amount of Convention over Code here. Rails is working
out which URL the form should submit to from the objects we’re passing in.
It also provides methods for wrapping the values of our comment object in
form fields.

In Rails, forms and inputs become transparently easy to populate. You’ll now
be able to see the form, but submitting it will throw in an error because we
haven’t added the controller and action to deal with the request:

 $ rails generate controller comments�

Open your new controllers/comments_controllers.rb file and add:

 def create�
 @article = Article.find(params[:article_id])�
 @comment = @article.comments.build(params[:comment])�
 respond_to do |format|�
 if @comment.save�
 format.html { redirect_to(@article, :notice => 'Comment was successfully �
 added.') }�
 else�
 format.html { render :action => "new" }�
 end�
 end�
 end�

Our method is now in place to translate form values (held in params) into
Ruby objects and save the new comment to the database before taking the
user back to the article. Notice that there’s a branch in the code for when the
comment doesn’t save and we want to render the template ‘new’ with the
form in it. If you’re feeling adventurous, try completing this path (hint: start by
telling your comment model that it needs a name before it can be saved). See
the section on validation in part one for more details.

In essence, we’ve now added a complete feature to our application. While
we could tweak the exact details of it, perhaps requiring a valid email address,
or adding permalinks to individual comments, the overall structure wouldn’t
change: Models are marshalled via a Controller and the output of their
interactions is display in a View. Armed with this, you can start adding other
features to your blog.

Using Gems
A blog wouldn’t be a blog without tagging. It’s a scientific fact, which I’ve just
made up, that humanity was unable to find any information until the invention
of the Tag-Cloud at CERN in 2001 by a team of 12 French physicists and a
Belgian who everyone assumed was French.

It’s pretty boring to build a tagging system, though, and it’s actually a very
common problem. If we substitute out our domain object (the article) then we
get a statement that could apply to recipes, music tracks, bookmarks or
anything else. So that we can browse Things by topic, each Thing should be
able to take an arbitrary number of text labels. We should then be able to
browse by these labels.

If the problem isn’t unique to our domain, let’s see if we can get someone
else to solve it for us. Ruby has a rich ecosystem of libraries that are distributed
as self-contained packages called Gems and managed by a command called,
funnily enough, gem. Rails itself is distributed as a Gem. You can see this with
the command:

A place for everything Rails is highly prescriptive as to how your app is laid out, but
the enforced structure pays dividends

 Routing can be a bit confusing
 if you’ve only worked with
 static HTML sites or raw PHP

NET215.dev_tut_rails 108 4/5/11 12:59:40 PM

		 .net june 2011 109

.net technique/backend

 $ gem list�

You’ll be presented with a list of all the libraries you’ve installed. One of the
key features of gem is its dependency management. When you installed Rails,
gem automatically included all the other libraries it depends on. Also notice
that all the gems have their version numbers listed; you can use this feature to
jump between different versions of the same gem in your projects as required.
That’s an advanced topic, though. Let’s go back to our tagging example:

 $ gem install acts-as-taggable-on�

After running this command, you should see output indicating that the gem
has been successfully installed. We need to tell our app to load it by editing
Gemfile. This acts as an index telling our app which gems to load when it
starts, and where to find them if they’re not installed:

 gem 'acts-as-taggable-on'�

Next up we’re going to need some tables to hold our tags and their
relationships; acts-as-taggable-on can do this for us:

 $ rails generate acts_as_taggable_on:migration�
 $ rake db:migrate�

You’ll see that this has added some tables to your database. We just have to
let the app know what we want to be taggable:

 class Article < ActiveRecord::Base�
 acts_as_taggable_on :tags�

That’s all the code you need to make your articles taggable. Fire up a
console and explore:

 > a = Article.first�
 => #<Article id: 1, title: "one", body: "two", ...>�
 > b = Article.last�
 => #<Article id: 2, title: "Second", body: "lorem", ...>�
 > a.tag_list = "Red, Green, Blue"�
 => "Red, Green, Blue"�
 > b.tag_list = "Pink, Blue"�
 => "Pink, Blue"�
 > a.save�
 > b.save�
 > a.tags�
 => [#<ActsAsTaggableOn::Tag id: 1, name: "Red">, �
 #<ActsAsTaggableOn::Tag id: 2, name: "Blue">, �
 #<ActsAsTaggableOn::Tag id: 3, name: "Green">]�
 > b.tags�

 => [#<ActsAsTaggableOn::Tag id: 2, name: "Blue">, �
 #<ActsAsTaggableOn::Tag id: 4, name: "Pink">]�
 > Article.tagged_with "Blue"�
 => [#<Article id: 1, title: "one", body: "two", ...>, #<Article id: 2, �
 title: "Second", ...>]�
 > Article.tagged_with "Red"�
 => [#<Article id: 1, title: "one", ...>]�
 > a.find_related_tags�
 => [#<Article id: 2, title: "Second", ...>]�

Going further
The acts-as-taggable-on gem can do a lot more than this: find out exactly
what from the project homepage (github.com/mbleigh/acts-as-taggable-on).
Why not work through the readme on GitHub and see if you can extend your
Article form to add tags, and then have your show action provide links to
related items?

Gems – and their close relative, plug-ins – give Rails an extremely rich
system of extensible features. You can quickly add everything from swear-word
filters to full ecommerce systems to your Rails applications, leveraging other
developers’ experience to build your site better and faster.

That concludes our whistlestop tour of Rails 3.0, and we’ve only scratched
the surface of the aid it offers to developers. I hope your interest has been
piqued and you explore what the framework can do and see what other
features you can add to your blog. l

 About the author
 Name Gavin Montague
 Site leftbrained.co.uk

 Twitter @gavinmontague
 Areas of expertise Rails, usability
 Clients BBC, News International, Dell, National Trust
for Scotland, itison.com
 Favourite comedy show Collings & Herrin

Hosting Rails
How to get your project up and running

Hosting a Rails website can require a bit more thought than a static
website, or a PHP one, but it’s not hard. Phusion’s Passenger (modrails.
com) adds Rails support to the world’s most popular webserver, Apache.
If your hosting company doesn’t already provide Passenger support,
there are plenty of others that do.
	 For example, Heroku: Rails hosts as a cloud service (heroku.com). Not
only does it provide an incredibly neat way of deploying your app with
almost no effort; you can also host a development account for free.

Free account Ruby cloud platform Heroku Rails (heroku.com) is an easy way to go
about hosting your Rails website – plus it’s free to sign up and get started

Get on board Most good hosting firms will provide support for Passenger,
which offers easy deployment of Ruby applications on Apache servers

NET215.dev_tut_rails 109 4/5/11 12:59:41 PM

