
.net technique backend

100 .net july 2013

 �Knowledge needed Knowledge needed: basic programming for the web

� Requires Xxxxxxxx x xxxxxxxxxxxx xxxxxxxxxxxxxxxxx

 Project time X hour

Despite its ubiquity, email tends to be given short shrift by developers.
We’ll spend days optimising web servers, work late refactoring our
code and pull each other’s hair out over text editor preferences, but

no one thinks twice about poor old email. This attitude is particularly baffling
when you consider that almost every site relies on it for:

l Confirming user identity
l Receipt/digital goods delivery
l Communication with users who aren’t visiting right now
l Announcements/marketing
l Incoming sales enquires

Those all seem like pretty important tasks, but when was the last time you
checked how many customers were receiving the email your site is sending out?
In this article, we’ll look at some of the most common problems with email and
how you may not even know you’re suffering from them.

The many factors that can influence whether or not your email can get to
its recipient are usually lumped together as ‘deliverability’. I tend to think of
deliverability as being a mixture of:

l Authentication: are you who you claim to be in the ‘sender’ header?
l �Connotation: are your messages of interest to the recipient, or are

they spam?
l �Reputation: are you a trustworthy sender? Do you honour recipients’

and email service providers’ (ESPs) requests?

Before we get to these, let’s look at some general advice for dealing with email.

Email: it just works, right? Wrong. Gavin Montague takes a look at some of
the common mistakes we make when using it in our applications and sites

Don’t send your own email
Email infrastructure can be remarkably tricky, and it’s often a better idea to
outsource your delivery to specialists. Bulk/marketing email services such as
Campaign Monitor (www.campaignmonitor.com), MailChimp (http://mailchimp.
com) and others can provide you with a full suite of tools for a fraction of a
penny per email sent.

Similarly, for transactional email, there are services like Mandrill (http://
mandrill.com), Mailgun (www.mailgun.com) and SendGrid (http://sendgrid.
com), who allow you to send emails via their APIs or by exposing an
authenticated SMTP server to you.

These third party services will confirm that you’re following best practice.
They usually have excellent analytic tools, too. However, you may want to take
control of your own email because of cost, scaling issues or just because it’s
good to know what’s happening behind the curtain.

Authentication
Email is older than the internet, dating back to the early 1960s. It was a more
innocent time, when spam was nothing more than a delicious meat product
and everyone with an email address could comfortably fit inside one tube
train. The protocols describing how email works make no accommodation for
verifying the identity of a sender, the content of the message, or any of the
other issues that plague email today.

Over the years, ESPs and others have developed techniques for sifting out
the spammers and phishers from the real people. In order to get legitimate
messages through most filtering systems, there are some easy steps to take
that will ensure you are conforming to these unofficial standards.

Most of the systems for validating the identity of a sender are reliant
on DNS, the system that translates domain names to machine-readable
IP addresses and back again. A discussion of DNS could fill a whole book.
It’s beyond the scope of our discussion. However, if you’ve ever registered
a domain name and pointed it at a site, you probably know enough to
understand all the terms here.

Email/overcome
common problems

Lazy choices There are a wealth of SAAS companies you can outsource your email
services to, but where’s the fun in that?

What’s being said? The feedback loops provided by major ESPs will give you
valuable feedback about how your recipients view your company.

Info needed here

 .net july 2013 101 next>

.net technique backend

Set up rDNS
While DNS points a domain name to an IP address, the rDNS record associates
an IP address with a domain. This distinction is subtle but important. Anyone
who owns a domain can point it at any IP address, but only the person
in charge of an IP address can state what domain it should be associated
with. In this way, you can think of the rDNS as being definitively ‘true’, and
– because IP addresses are more tightly regulated that domain names – as
having more authority.

An ESP is much more likely to reject email coming from an IP address that
doesn’t have a correct-looking rDNS entry. Normally, you won’t be able to set

the rDNS entry for your server, but a support ticket to your hosting company
will usually be enough to get it sorted at their end.

Sender Policy Framework
The Sender Policy Framework (SPF) is an open standard that uses DNS to
whitelist the servers that can send email on behalf of a domain. As the owner
of a domain, you may authorise servers to send email as “@yourdomain.com”,
publishing a TXT record in your DNS. The SPF record is simply: a list of servers
that you allow to send messages; any subordinate systems that you cede control
to; and an action to use when failures occur. You can check for an SPF record
using the dig command:

 $ dig -t txt leftbrained.co.uk | grep spf�
 ... v=spf1 mx include:spf.messagingengine.com 198.211.127.241 -all�

The records start by stating the protocol: spf1. It then lists three sets of servers
that can send email for leftbrained.co.uk: any server in my MX records, any
server listed in my email provider’s SPF record, and finally the IP address of a
remote box I maintain. If any other server sends a message claiming to be from
my domain, it’s caught by the final clause all, which is prefixed by a minus sign.
This indicates that the message should be rejected by the recipient’s ESP.

DKIM
SPF is quite a blunt tool and relies on you having exclusive sending rights on
an IP address. If I were to include the IP address of a shared-hosting box in my
SPF record then other tenants could send email claiming to be from my domain.
For a finer level of control we can use DomainKeys Identified Mail (DKIM)
to digitally sign our emails, and ensure that individual messages and their
contents cannot be spoofed.

Killer insights The SpamAssassin rules wiki can give you an understanding of the
characteristics of your emails that can be improved

Use the source
When learning HTML and CSS you’ve probably made extensive use
of ‘View Source’ to see how sites work. Email isn’t quite as easy to
dissect, but it’s not far off.

Messages are sent between machines as plaintext and encoded
attachments. Emails essentially have two parts: the head and the body.
Today we’re concerned about the head. Whatever program you use to
read your email. it’s likely to have an option to show the raw/source/
original message. You’ll use this view a lot when improving your email.

The head of an email is a series of name/value pairs that function very
much like an HTML <head>. The information is mostly for the benefit of
the program rather than the end user, but today it’s of interest to us as a
diagnostics tool to see what’s going on as our messages bounce around
the internet.

from
The name and address the message purports to be from. Note that email
contains no intrinsic way of validating that a sender is who they claim to
be: the from field is just a text-field reported by the sending server. Many
phishing problems arise from this, and it’s why we have to be concerned
about authenticating our outbound messages.

reply-to
The address that the human reader should reply to. As mentioned in the
main article, you should make sure your messages come with a valid reply-
to address that is monitored by a human or intelligent set of mail-rules.
Importantly, the reply-to is distinct from the return-path.

return-path
The return-path header looks similar to the from or reply-to field, but it
indicates the address that should be used when there’s a problem with
delivery. Your return-path address should be distinct from your reply-
to one as it will normally receive a much higher volume of automatic
messages from recipient servers. You should regularly check your return-
path mailbox for indications that you’ve been blacklisted or otherwise
filtered by ESPs.

Setting up DKIM is a bit more involved than SPF, and entails installing
software on your email server. We’ll cover the theory behind the protocol in
this article. Look to your system administrator, hosting company or nearest
Unix geek for advice on setting up DKIM.

DKIM is often compared to a wax seal. When sending a letter, the writer
seals the flap of the envelope with a complicated wax seal. Anyone intercepting
the letter can’t open it without breaking the seal, thus alerting the recipient to
tampering. The interceptor can’t send letters pretending to be from the original
author because he doesn’t have the stamp with which to seal the envelope.

DKIM uses public/private key cryptography to sign emails with a seal based
on the content of the message, plus a private key held only by the sender. The
public key is published as a DNS record, so recipient programs can decrypt and
check the seal. If a message is signed with DKIM, you’ll see a header like this:

 DKIM-Signature: v=1; a=rsa-sha1; d=id.apple.com; s=id2048; c=relaxed/simple;�
 q=dns/txt; i=@id.apple.com; t=1364036350;�
 h=From:Subject:Date:To:�
 bh=Yv53eSPd+nzU8yApPHC+LUUEvAY=;�
 b=I+wp+NsL4+iycVM [...] k73Y4Iyzb7c7RRQYZC880lFhKH�

This signature on an email from Apple describes the protocol used, the DNS
record where the public key can be found, the fields used to generate the
signature, and finally the encrypted signature itself. My email provider will
retrieve the public key from id2048._domainkey.id.apple.com and use this,
along with the hash fields, to verify that the message was indeed sent by Apple.

Setting up authentication doesn’t improve your ability to get delivered per
se, but it will mark your emails as being legitimately from your organisation.
This will make it much harder for spammers to pose as you and, by
extension, make your emails more trustworthy to ESPs.

 When did you last check
 how many customers were
 receiving email from your site?

<prev 102 .net july 2013

.net technique backend

Connotation
Identifying yourself is a good first step, but if your messages appear to

contain spam then they’ll be flagged as spam. Now you may say, “But we don’t
send spam!” Well, with the help of SpamAssassin (http://spamassassin.apache.
org), let’s have a look at what could make a message look spammy.

SpamAssassin is used to filter email before it reaches users’ inboxes. At the
simplest level, it reads messages and scores them against a battery of tests. A
score above a certain threshold means spam. Some ESPs will include test results
in the message header:

 X-Spam-hits: BAYES_00 -1.9, RCVD_IN_DNSWL_HI -5, RP_MATCHES_RCVD �
 -0.704, LANGUAGES en, SA_VERSION 3.3.1�

You can consult the SpamAssasin wiki (http://wiki.apache.org/spamassassin) to
see what these tests mean. For example, RCVD_IN_DNSWL_HI indicates that the
message comes from a whitelisted server and is very unlikely to be spam. We’ll
now look at some rules that you may fall foul of.

HTML has unbalanced body tags
Spammers tend to write bad HTML, so an email containing bad HTML is more
likely to be spam. You should validate the markup of your emails as closely
as that of your site. There are a slew of tests relating to the markup of your
message rather than the content itself.

Images with 0-400 bytes of words
To get round language analysis, spammers sometimes send messages as a
picture of text. Be wary of sending images in place of text content, or at least
make sure to include a plaintext version too.

Subject line starts with buying
Perhaps your marketing team write an email letting customers know about a
sale: “Buy our lawnmowers now and save 30 per cent!” Sadly, there are phrases
so beloved by spammers that they should be avoided altogether. Use the
SpamAssassin wiki (http://wiki.apache.org/spamassassin) as a style guide for
phrases to steer clear of.

Contains a misspelling of word
Filters cope with the common spammer tactic of deliberately misspelling trigger
terms like ‘ca5ino’ or ‘perscriptions’. You should check your emails for spelling
mistakes. Also watch out for things that look like trigger words. I had a problem
where the random name assigned to one of my CDN servers at work looked too
much like that of a male enhancement pill – our rejection rate skyrocketed!

Almost no test is individually strong enough to mark a truly legitimate
message as spam. The effect is more like raindrops flowing together to create
a flood. It’s worth familiarising yourself with the sort of things that a filtering
program will check, if only so you can prevent mistakes. Depending on your

Get-out clause Make it easy to leave. To unsubscribe from unwanted Google+ mail
I’d need a password I don’t know; net result – I just mark messages from Google as spam

Audit trail In the above example, we can see Gmail indicating that our message is
using SPF, DKIM and list-unsubscribe

message volumes it may be worth setting up a local version of SpamAssasin or
similar to test your messages against.

Reputation
While messages are judged individually on their content, ESPs also consider the
history of the sending organisation. Over time, a server that repeatedly sends
spam will find its way onto Real-time Blackhole Lists (RBL), such as Spamhaus
(www.spamhaus.org). These publicly available lists are compiled and used by
ESPs to pinpoint IP addresses that are not to be trusted.

Although it’s possible to be removed from a blacklist by mending your ways,
it’s better to stay off them in the first place. The best way to stop yourself from
being blacklisted by ESPs is to listen to what they’re telling you.

Feedback loops
Hotmail, Yahoo, AOL and other ESPs provide free tools that will help you
monitor how your email is being received by their systems. By registering
yourself as the ‘owner’ of an IP address, the ESPs will deliver near-real-time
updates to you whenever one of their users junks your email.

Search for each provider’s feedback loop, answer some questions to prove
your ownership of a sending domain, and within a few hours you’ll start to
receive notices each time a user junks your messages.

Gmail uses an alternative system called list-unsubscribe. The list-unsubscribe
protocol allows senders to include an email address or HTTP endpoint as a
header in their outbound email that should be pinged when the recipient
wishes to stop receiving messages:

 List-Unsubscribe: <mailto:list-unsubscribe@yourdomain.com>�

To a recipient, feedback loops and list-unsubscribe are analogous. When they
open a message, the webmail client will display a notice asking if they no
longer wish to receive messages. Clicking this notice will send a message to
your loop address or list-unsubscribe end-point.

These systems are important, because users simply don’t trust ‘unsubscribe’
links. A large percentage will choose to end their relationship with you by
marking your messages as spam.

They don’t necessarily mean this in a bad way, but from their perspective
unsubscribing and blacklisting have the same effect. They don’t necessarily
think of you badly. Many people will have found the latter option to be a more
reliable and trusted method of stopping unwanted mail.

 The goal is to have our email
 read by users: as with the rest
 of the web, content is king

 .net july 2013 103

.net technique backend

 About the author
 Name Gavin Montague
 Web http://leftbrained.co.uk
 Twitter @gavinmontague
 Areas of expertise Ruby, usability
 Clients itison
 What’s the most trouble you’ve ever been in?
Xxxxxx

Bad meat Spamhaus is probably the most powerful RBL – use it to check the status of
your IP addresses and take swift action if you find yourself blacklisted

Email analytics
If you want to improve any aspect of your email, the first thing you’ll
need is data. If you don’t know how many people are opening your
newsletters each month, how can you decide if changing the subject
format has an effect?

Unfortunately, there’s not an email equivalent to Google Analytics, the
free site-metrics service most developers rely on to provide statistics on
usage and visitors. Although some services do exist, such as Litmus (http://
litmus.com), they tend to be quite costly. Luckily, it’s quite easy to write a
simple analytics program, mostly because what one can measure in email
is limited to two techniques:

Image shims
Also called a ‘bug’, this is an image tag that points to a server-side script
in your program. When the user opens their email, the shim is loaded
and gives your application a chance to capture data about the user and
their email client. However, because most email clients will allow users
to block images in their messages, it will always underestimate your
true open rate.

Link tracking
The desired action for most emails is to bring the user back to your site.
The best way to do this is via Google Analytics campaigns (http://netm.
ag/campaign-242). This takes little effort and provides useful data. But
because Google’s integration with your app is limited, it’s much harder
to gather specific information about your users. For this, you’ll need to
collect your own information by injecting a ‘redirect’ path into your
links. For example, my app may send an email about a sale to Bob
and include this link:

 http://sales.com/r.php?u=bob&source=banner&r=/lawnmowers

When he clicks, Bob is taken to the analytics script, which registers the
hit and source before redirecting him to /lawnmowers/sale. From the
end-user’s perspective, nothing odd happened, but we can now start
aggregating useful data on how people responded to our campaigns.

Acid test The likes of Litmus (http://litmus.com) eclipse Google Analytics for
email metrics, but are pricey – so you’re as well building your own simple program

The feedback loops and list-unsubscribe are a chance to redeem yourself.
If you can respect the wishes of a junking user and stop sending messages,
you’ll not be penalised. When you receive an unsubscribe request from an ESP,
or indeed anywhere, aim to act on it within 24 hours. If an ESP sees that you
are repeatedly ignoring requests to stop mailing a particular address it’ll come
down on you even harder.

Consider how you could go about automating the unsubscribing process
by writing a program that reads your feedback inbox and automatically
unsubscribes complainants.

Make leaving easy
A related point is that one of the best ways of improving your deliverability is
to make it very easy to leave. Imagine that I receive an email from a service I no
longer want. Hopefully, the offending email will contain an unsubscribe link and
I trust the sender enough to click on it. Imagine that the page now asks me to
log in before unsubscribing: this is bad design.

As a user who wants to unsubscribe, I probably have very low engagement
with the service, and it’s unlikely that I can remember my user name and
password. I could work out how to reset my password, jump through some
more hoops and finally unsubscribe, but it’s more likely I’ll just go back to my
inbox and hit ‘Junk’. The more junk requests that service accrues, the worse its
reputation will get.

Every email you send should explain to the user why they received it. Emails
should include a prominent link that can unsubscribe users in no more than
two clicks, and which requires no input on their part. Attach a unique, random
token to each user in your database and pass this through in the unsubscribe
link. This will give you enough information to individualise the request and
ensure it is legitimate.

Don’t send from no-reply
There’s no excuse not to be friendly. Make sure your messages specify a reply-
to address that is actually monitored and not just a black hole. A lot of users
will try to get in touch with a sender by replying. They assume their message
will be picked up. No amount of “don’t reply to this address” can fix this.

Instead, specify a reply address that’s monitored by either a person or a
mail rule that will respond to incoming messages with a list of contact options
for your company. This is trivial to implement and leads to far fewer frustrated
support tickets from users: “I’ve emailed you about this five times already! Why
didn’t you answer?”

In conclusion
The ultimate goal is to have our email read by users. As with the rest of the
web, content is king. If you want users to value your communications, you
should only send them messages that they asked for and that will benefit them.

In the same way that a slow, awkward or unintuitive website will cost you
traffic, so too will a badly-managed email system. I hope that I’ve given you
some ideas about how you can improve yours. l

