
.net technique open_source

80 .net january 2009

 Knowledge needed A little HTML and CSS

 Requires Free to download Subversion tools

 Project time One hour

Subversion is a free, open source tool produced by CollabNet Inc
and distributed from subversion.tigris.org. It’s used to manage the
source for Apache, Python, Django and literally thousands of other

projects, large and small. In fact, I’m using Subversion to track the changes
to this very article as I write it.

You can think of Subversion as working like a file server. A nominated
directory, called the repository, holds a master copy of the project. Anyone
making alterations to the project must first check out a copy to work on. With
their alterations complete, the changes are committed back to the repository
where they become visible to other collaborators. Nothing fancy so far, but
where it gets interesting is that Subversion doesn’t just store the current state
of the files; it records every commit along with a note describing what the
change was and who made it.

If everyone can edit their working copies and commit back to the
repository, what happens when the changes are in conflict? If Steve and Bill
are both editing index.html, what happens when Steve commits his changes
and Bill tries to commit his changes a few minutes later?

Subversion has a good answer to this: it will refuse to add any of Bill’s
changes to the repository until Steve’s edits have been merged into his
working copy. If the changes don’t clash (say Steve was editing the document
head and Bill was making changes to the text in the footer) Subversion will
silently add Steve’s changes into Bill’s working copy. If any changes overlap,
Subversion will ask for Bill’s help in merging Steve’s alterations. After bringing
his working copy up to date, Bill is free to commit to the repository.

Subversion assigns each commit an incremental stamp. The first import is
assigned number 1; the next set of changes make the project into revision 2,

 openopen_source
version control
Where would we be without the ability to undo our mistakes? Gavin Montague
shows how your projects can benefi t from an undo feature that puts Ctrl-Z to shame

and so on. This makes it easy to check whether your working copy is up to
date. If the repository is at revision 15 and your working copy is on revision
12, then three commits must have been made since you last updated. You can
use the commit numbers to ask for older copies of files: ‘Show me how the
style sheet looked at revision 5’.

Alternatively, you can use dates to phrase the question: ‘Show me how the
homepage looked two weeks ago.’

This all boils down to a four-step workflow:
1. Check out a working copy from the repository.
2. Make your alterations; add, delete and edit files.
3. Merge recent changes from the repository into your working copy.
4. Commit your changes back to the repository.
We’ve covered a lot of ground in this section. Don’t worry if it all seems a

bit abstract.
There’s a glossary of the most important and commonly used terms on the

facing page (top right) and we’re going to run through some of the practical
benefits Subversion gives us by working on a hot Web 3.0 dot-com. The files
you’ll need can be found on this issue’s disc.

Installing Subversion
Subversion is available for Windows, OS X and Linux, so everyone will be able
to play along. The bad news is that we’ll be using the command line interface
in this tutorial. You might not be familiar with the command line, which we’ll
call the ‘prompt’ from now on, but it’s the best way of learning the underlying

Your essential CD

All the files you’ll require

for this tutorial can be

found on this issue’s CD.

Left Open source version
control system Subversion
enables you to keep
track of changes to your
project. It records every
commit along with a note
describing what the change
was and who made it

Right You can use the
diff command to get
more details about the
changes that have been
made to a particular file

Expert tip Don’t save up your commits

Subversion only takes snapshots of your project when you commit back
to the repository. Don’t work for a whole day and then bundle up all
your changes in a single commit just before you go home. Commit each
time you complete a discrete task and add a descriptive comment that
will be meaningful at a later date. ‘Updated descriptions on product
pages with correct SKU code’ is an example of a good commit message.
‘Fixed some bugs and added new stuff’ is not.

NET184.tut_sub 80 19/11/08 2:18:41 pm

 .net january 2009 81 next>

.net technique open_source

Setting up your repository
Create a new folder on your desktop called svn_tutorial and move the
prompt into it with the cd (Change Directory) command and then create
an empty repository:

 $ cd Desktop/svn_tutorial
 $ svnadmin create repository

You’ll now see the folder repository appear inside svn_tutorial. This is the
database that will store the master copy of our project; you’ll never use these
files directly, but it’s good to know they exist.

Copy the folder emailr from the disc into svn_tutorial. We’ll now import
it into the repository for Subversion to track. You’ll need to give the full path
to the repository folder so the command will vary between systems. On
Windows, it’ll look like this:

 $ svn import emailr “file:///C:/Documents and Settings/<your user name>/
 Desktop/svn_tutorial/repository” -m “Imported the starter project into the
 repository”

And on a Mac the command will be:

 $ svn import emailr “file:///Users/<your user name>/Desktop/svn_tutorial/
 repository” -m “Imported the starter project into the repository”

Subversion will reply by listing the files added to the repository. The final
portion of the command, from -m onwards, is the commit comment. We’ll
look at how to access these later.

Our repository is now set up and we can check out a working copy called
dev_copy. Windows users do this with the command:

 $ svn checkout “file:///C:/Documents and Settings/<your user name>/
 Desktop/svn_tutorial/repository” dev_copy

And for the Mac users:

 $ svn checkout “file:///Users/<your user name>/Desktop/svn_tutorial/
 repository” dev_copy

A folder called dev_copy will appear. We won’t have to give the long path to
the repository again. Our working copy will automatically find its repository.
We also no longer need the original copy of emailr, so that can be deleted.

It’s worth noting that although we’re keeping our repository and our
working copy on the same computer, Subversion can use a whole range of
network protocols to communicate with remote repositories via ssh, http and
its own svn protocol. Keeping your repository off-site can give you a
higher level of security and allow for easier collaboration.

Slik service If you’re using Subversion on Windows you can install the Command Line
Client SVN tools from Slik (www.sliksvn.com/en/download)

Expert tip Graphical interfaces to svn

Although we’ve been using the command line in this tutorial,
Subversion also supports a range of graphical front-ends that enable
you to manage repositories and working copies from within a
normal desktop application. On a Mac you might like to try Versions
(versionsapp.com/) or svnX (www.lachoseinteractive.net/en/community/
subversion/svnx/features/) while on Windows, TortoiseSVN (tortoisesvn.
tigris.org/) integrates directly into your File Explorer.

Repository The database that
retains the master copy, and
history, of your project.
Check out To connect to the
repository and make a local
working copy of the project
Working copy The local
version of the project in
which edits are made
Commit To write changes
from your working copy back
to the repository

Update Pulling changes
from the repository into
your working copy
Merge When changes in your
working copy can be silently
combined with changes
in the repository
Conflict Two changes between
your working copy and the
repository that Subversion
cannot resolve and required
manual intervention.

Glossary
Like all software, Subversion comes with
its own terminology: here’s our guide

concepts of version control. Once you’re happy with what’s happening, you
can graduate to any of the graphical front-ends.

For Windows, install the Command Line Client SVN tools from Slik
(www.sliksvn.com/en/download). Once it’s installed, you can bring up the
DOS prompt by clicking on the Start menu, selecting Run and then typing
cmd into the Run this program field.

Subversion has come pre-installed with OS X since 10.4. For earlier versions,
Martin Ott maintains a Subversion package (homepage.mac.com/martinott/).
Once installed, open the Terminal prompt by launching Applications > Utilities
> Terminal.app.

For Linux, refer to the instructions for your package manager. It’s likely that
you’ll be able to install Subversion easily.

In the code samples below, the lines of input are prefixed with a $ sign.
Depending on your system, the $ sign might be replaced with your username
or the path to the current directory.

Lines that don’t have a dollar show the generated output. For example, to
confirm Subversion is installed, type the following at the prompt:

 $ svn
 Type ‘svn help’ for usage

Here svn is your line of input. Pressing enter will generate the output Type
‘svn help’ for usage.

Detailed help on all the commands we use below can be accessed by
appending the command name after help. For example:

 $ svn help checkout

 You can ask for older copies of
 fi les: ‘Show me how the style
 sheet looked at revision 5’

NET184.tut_sub 81 19/11/08 2:18:42 pm

.net technique open_source

<prev 82 .net january 2009

Your first edit
Time to start using Subversion on our site: a cutting edge, paradigm-

shifting Web 3.0 email tool. We’ll only be dealing with the HTML and
JavaScript parts in this version.

The first thing we’ll do is update the background colour of the page in
screen.css to match the new company branding – replace #C9E6EC with
#FF0000.

After saving the file, move the prompt into dev_copy with cd and ask
Subversion to look over the working copy for changes.

 $ cd dev_copy
 $ svn status.
 m stylesheets/screen.css

The m indicates that the file has been modified. We’ll see other possible
markers representing the state of files later. To get more details on the
changes to a particular file, use the diff command:

 $ svn diff screen.css
 Index: stylesheets/screen.css
 ===
 --- stylesheets/screen.css (revision 1)
 +++ stylesheets/screen.css (working copy)

 @@ -24,7 +24,7 @@ text-align: center;
 font-size: 12px;
 font-family: Helvetica, Arial, sans-serif;
 -background: #c9e6ec;
 +background: #FF0000;
 color: #FFFFFF;
 }

This format is called ‘unified diff’ and is often used by developers to exchange
patches of code via email, IM and the web. There are tools for automatically
applying patches, but the format is rather readable and will serve us well here.
Lines beginning with a + show insertions. Lines with a - show deletions. As
you can see, we’ve removed the line containing the old background colour
and inserted a line containing the new one.

 $ svn commit -m ‘Changed the background colour of the page to match our
 new corporate identity’

The working copy sends its changes to the repository to be committed.
Run svn status and you’ll notice Subversion no longer reports that screen.css
is modified – the changes have been written to the repository and the file is
now up to date.

It’s good practice to call update after a commit. This will pull in any
changes made by other collaborators.

 $ svn update

Adding and deleting files
Let’s add a new page to our site: create thanks.html by copying index.html
and altering the copy.

Once the file has been created in dev_copy, run svn status:

 $ svn status
 ? thanks.html

The question mark indicates that Subversion doesn’t currently track this file.
There are several cases where you wouldn’t want all the files in the working
copy to be added to the repository (log files, temporary file or cached data,
for example) so Subversion won’t track a file unless we explicitly ask:

 $ svn add thanks.html
 $ svn status
 A thanks.html

The ‘A’ flag shows that Subversion will now add thanks.html to the repository
in the next commit.

Interfaces The prompt is your friend

The Windows DOS prompt (left) and OS X bash shell (right) might not
be the prettiest interfaces in the world but there are a lot of powerful
tools that can be used through them.

Learn online If you want to find out more about using Subversion, the book Version
Control with Subversion is available to download for free at svnbook.red-bean.com

Tortoise time Subversion supports a range of graphical front-ends, such as TortoiseSVN
(tortoisesvn.tigris.org), which integrates directly into your File Explorer in Windows

NET184.tut_sub 82 19/11/08 2:18:43 pm

		 .net january 2009 83

.net technique open_source

 $ svn commit -m ‘Added the thanks page with draft copy’�

You can edit multiple files between each commit. Add a page called
copyright.html to dev_copy and then put a link to it in the footer of both
index.html and thanks.html.

 $ svn status�
 ? copyright.html�
 M index.html�
 M thanks.html�

Next add copyright.html to the working copy’s index and then commit all
the changes.

 S svn add copyright.html�
 $ svn commit -m ‘Added copyright notice to all pages’�

Try adding a few more pages to the repository. You can then delete any of
them from the repository with the command:

 $ svn delete example.html�
 D example.html�

At the next commit, the files marked as ‘D’ will be removed from the
repository and your working copy.

Make some more edits to the files within the site. Try adding some images
to the site. You’ll find Subversion handles binary files as well as text: images,
PDFs, Word files, in fact almost anything can be kept in a repository.

After each set of changes, commit to the repository.

Rolling back changes
Fast-forward a few weeks. Our fictional client calls to say that they’ve decided
to stick with the old colour scheme and could we go back to the original
background? Without source control, we’d be searching our hard drives for
an old copy of the project and we might find one, or we might not. Not a
problem with Subversion.

 About the author
 Name Gavin Montague
 Site leftbrained.co.uk
 Areas of expertise Ruby, PHP, front-end development
 and Cocoa
 Which (if any) football team do you support? None, I’m
 waiting for fox hunting to make a comeback

After bringing our project up to date with svn update, inspect the log for
edits to our style sheet.

 $ svn log stylesheets/screen.css �
 ---�
 r2 | gavin | 2008-09-17 21:25:26 +0100 (Wed, 17 Sep 2008) | 1 line�
 changed the page background colour�
 ---�
 r1 | gavin | 2008-09-17 17:53:14 +0100 (Wed, 17 Sep 2008) | 1 line�
 initial import�
 ---�

Depending on other changes you’ve made to screen.css, the output of this
command may vary, but you’ll notice that only commits that have modified
this file are listed.

Should you want to see the commit log for the whole project, run the
command without giving a filename.

As you can see, the log lists the time of each commit and the name of the
user responsible.

We can see the background colour was changed at revision 2. Use the diff
command to inspect the change in more detail:

 svn diff -r 1:2 stylesheets/screen.css�
 Index: stylesheets/screen.css�
 ==�
 --- stylesheets/screen.css (revision 1)�
 +++ stylesheets/screen.css (revision 2)�
 @@ -24,7 +24,7 @@�
 text-align: center;�
 font-size: 12px;�
 font-family: Helvetica, Arial, sans-serif;�
 -background: #C9E6EC;�
 +background: #FF0000;�
 color: #FFFFFF;�
 }�

This command reads as ‘Show what changed in screen.css between revisions 1
and 2’. As you can see, our original edit is returned. We could copy/paste this
change back into our working copy, but we’ll be smarter and have Subversion
merge the change for us:

 svn merge -r 2:1 stylesheets/screen.css
 --- Reverse-merging r2 into ‘stylesheets\screen.css’:
 U stylesheets\screen.css

Your style sheet will now contain the original background colour. You can
use the merge command to pull any change, or group of changes, back into
your working copy; you need never lose work again.

Where to go from here
We’ve only covered the basics of Subversion here. We haven’t looked at,
for example, how it can be used across a network, to keep a secure off-site
backup of your code; how it can help teams work simultaneously on the same
code without fear of overwriting each other’s code; or how to use branching
to help develop experimental features without interfering the ongoing
maintenance of your production code.

If you’d like to learn more, one of the best resources is the book Version
Control with Subversion, published by O’Reilly but also freely available to
download at svnbook.red-bean.com.

Hosted system Remote repositories

It’s always a good idea to host your repositories on a server that’s
backed-up and properly maintained. But that can be such a hassle. The
good folk at Beanstalk provide a range of hosted Subversion packages
that remove all the faffing. There’s a free package available that’s great
for taking your first steps with remote repositories.

NET184.tut_sub 83 19/11/08 2:18:43 pm

